113 research outputs found

    A rewiring model of intratumoral interaction networks.

    Get PDF
    Intratumoral heterogeneity (ITH) has been regarded as a key cause of the failure and resistance of cancer therapy, but how it behaves and functions remains unclear. Advances in single-cell analysis have facilitated the collection of a massive amount of data about genetic and molecular states of individual cancer cells, providing a fuel to dissect the mechanistic organization of ITH at the molecular, metabolic and positional level. Taking advantage of these data, we propose a computational model to rewire up a topological network of cell-cell interdependences and interactions that operate within a tumor mass. The model is grounded on the premise of game theory that each interactive cell (player) strives to maximize its fitness by pursuing a rational self-interest strategy, war or peace, in a way that senses and alters other cells to respond properly. By integrating this idea with genome-wide association studies for intratumoral cells, the model is equipped with a capacity to visualize, annotate and quantify how somatic mutations mediate ITH and the network of intratumoral interactions. Taken together, the model provides a topological flow by which cancer cells within a tumor cooperate or compete with each other to downstream pathogenesis. This topological flow can be potentially used as a blueprint for genetically intervening the pattern and strength of cell-cell interactions towards cancer control

    Pathological regression of primary tumour and metastatic lymph nodes following chemotherapy in resectable OG cancer: pooled analysis of two trials

    Get PDF
    Background: No definitive largescale data exist evaluating the role of pathologically defined regression changes within the primary tumour and lymph nodes (LN) of resected oesophagogastric (OG) adenocarcinoma following neoadjuvant chemotherapy and the impact on survival. / Methods: Data and samples from two large prospective randomised trials (UK MRC OE05 and ST03) were pooled. Stained slides were available for central pathology review from 1619 patients. Mandard tumour regression grade (TRG) and regression of tumour within LNs (LNR: scored as present/absent) were assessed and correlated with overall survival (OS) using a Cox regression model. An exploratory analysis to define subgroups with distinct prognoses was conducted using a classification and regression tree (CART) analysis. / Results: Neither trial demonstrated a relationship between TRG score and the presence or absence of LNR. In univariable analysis, lower TRG, lower ypN stage, lower ypT stage, presence of LNR, presence of well/moderate tumour differentiation, and absence of tumour at resection margin were all associated with better OS. However, the multivariable analysis demonstrated that only ypN, ypT, grade of differentiation and resection margin (R0) were independent indicators of prognosis. Exploratory CART analysis identified six subgroups with 3-year OS ranging from 83% to 22%; with ypN stage being the most important single prognostic variable. / Conclusions: Pathological LN stage within the resection specimen was the single most important determiner of survival. Our results suggest that the assessment of regression changes within the primary tumour or LNs may not be necessary to define the prognosis further

    Does Pain at an Earlier Stage of Chondropathy Protect Female Mice Against Structural Progression After Surgically Induced Osteoarthritis?

    Get PDF
    OBJECTIVE: Female C57BL/6 mice exhibit less severe chondropathy than male mice. This study was undertaken to test the robustness of this observation and explore underlying mechanisms. METHODS: Osteoarthritis was induced in male and female C57BL/6 or DBA/1 mice (n = 6-15 per group) by destabilization of the medial meniscus (DMM) or partial meniscectomy (PMX). Some mice were ovariectomized (OVX) (n = 30). In vivo repair after focal cartilage defect or joint immobilization (sciatic neurectomy) following DMM was assessed. Histologic analysis, evaluation of gene expression in whole knees, and behavioral analysis using Laboratory Animal Behavior Observation Registration and Analysis System (LABORAS) and Linton incapacitance testing (n = 7-10 mice per group) were performed. RESULTS: Female mice displayed less severe chondropathy (20-75% reduction) across both strains and after both surgeries. Activity levels after PMX were similar for male and female mice. Some repair-associated genes were increased in female mouse joints after surgery, but no repair differences were evident in vivo. Despite reduced chondropathy, female mice developed pain-like behavior at the same time as male mice. At the time of established pain-like behavior (10 weeks after PMX), pain-associated genes were significantly up-regulated in female mice, including Gdnf (mean ± SEM fold change 2.54 ± 0.30), Nrtn (6.71 ± 1.24), Ntf3 (1.92 ± 0.27), and Ntf5 (2.89 ± 0.48) (P < 0.01, P < 0.01, P < 0.05, and P < 0.001, respectively, versus male mice). Inflammatory genes were not regulated in painful joints in mice of either sex. CONCLUSION: We confirm strong structural joint protection in female mice that is not due to activity or intrinsic repair differences. Female mice develop pain at the same time as males, but induce a distinct set of neurotrophins. We speculate that heightened pain sensitivity in female mice protects the joint by preventing overuse

    Type of mRNA COVID-19 vaccine and immunomodulatory treatment influence humoral immunogenicity in patients with inflammatory rheumatic diseases

    Full text link
    Patients with inflammatory rheumatic diseases (IRD) are at increased risk for worse COVID-19 outcomes. Identifying whether mRNA vaccines differ in immunogenicity and examining the effects of immunomodulatory treatments may support COVID-19 vaccination strategies. We aimed to conduct a long-term, model-based comparison of the humoral immunogenicity following BNT162b2 and mRNA-1273 vaccination in a cohort of IRD patients. Patients from the Swiss IRD cohort (SCQM), who assented to mRNA COVID-19 vaccination were recruited between 3/2021-9/2021. Blood samples at baseline, 4, 12, and 24 weeks post second vaccine dose were tested for anti-SARS-CoV-2 spike IgG (anti-S1). We examined differences in antibody levels depending on the vaccine and treatment at baseline while adjusting for age, disease, and past SARS-CoV-2 infection. 565 IRD patients provided eligible samples. Among monotherapies, rituximab, abatacept, JAKi, and TNFi had the highest odds of reduced anti-S1 responses compared to no medication. Patients on specific combination therapies showed significantly lower antibody responses than those on monotherapy. Irrespective of the disease, treatment, and past SARS-CoV-2 infection, the odds of higher antibody levels at 4, 12, and 24 weeks post second vaccine dose were, respectively, 3.4, 3.8, and 3.8 times higher with mRNA-1273 versus BNT162b2 (p < 0.0001). With every year of age, the odds ratio of higher peak humoral immunogenicity following mRNA-1273 versus BNT162b2 increased by 5% (p < 0.001), indicating a particular benefit for elderly patients. Our results suggest that in IRD patients, two-dose vaccination with mRNA-1273 versus BNT162b2 results in higher anti-S1 levels, even more so in elderly patients

    Type of mRNA COVID-19 vaccine and immunomodulatory treatment influence humoral immunogenicity in patients with inflammatory rheumatic diseases.

    Get PDF
    Patients with inflammatory rheumatic diseases (IRD) are at increased risk for worse COVID-19 outcomes. Identifying whether mRNA vaccines differ in immunogenicity and examining the effects of immunomodulatory treatments may support COVID-19 vaccination strategies. We aimed to conduct a long-term, model-based comparison of the humoral immunogenicity following BNT162b2 and mRNA-1273 vaccination in a cohort of IRD patients. Patients from the Swiss IRD cohort (SCQM), who assented to mRNA COVID-19 vaccination were recruited between 3/2021-9/2021. Blood samples at baseline, 4, 12, and 24 weeks post second vaccine dose were tested for anti-SARS-CoV-2 spike IgG (anti-S1). We examined differences in antibody levels depending on the vaccine and treatment at baseline while adjusting for age, disease, and past SARS-CoV-2 infection. 565 IRD patients provided eligible samples. Among monotherapies, rituximab, abatacept, JAKi, and TNFi had the highest odds of reduced anti-S1 responses compared to no medication. Patients on specific combination therapies showed significantly lower antibody responses than those on monotherapy. Irrespective of the disease, treatment, and past SARS-CoV-2 infection, the odds of higher antibody levels at 4, 12, and 24 weeks post second vaccine dose were, respectively, 3.4, 3.8, and 3.8 times higher with mRNA-1273 versus BNT162b2 (p < 0.0001). With every year of age, the odds ratio of higher peak humoral immunogenicity following mRNA-1273 versus BNT162b2 increased by 5% (p < 0.001), indicating a particular benefit for elderly patients. Our results suggest that in IRD patients, two-dose vaccination with mRNA-1273 versus BNT162b2 results in higher anti-S1 levels, even more so in elderly patients

    Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer.

    Get PDF
    Mismatch repair deficient (dMMR) gastro-oesophageal adenocarcinomas (GOAs) show better outcomes than their MMR-proficient counterparts and high immunotherapy sensitivity. The hypermutator-phenotype of dMMR tumours theoretically enables high evolvability but their evolution has not been investigated. Here we apply multi-region exome sequencing (MSeq) to four treatment-naive dMMR GOAs. This reveals extreme intratumour heterogeneity (ITH), exceeding ITH in other cancer types >20-fold, but also long phylogenetic trunks which may explain the exquisite immunotherapy sensitivity of dMMR tumours. Subclonal driver mutations are common and parallel evolution occurs in RAS, PIK3CA, SWI/SNF-complex genes and in immune evasion regulators. MSeq data and evolution analysis of single region-data from 64 MSI GOAs show that chromosome 8 gains are early genetic events and that the hypermutator-phenotype remains active during progression. MSeq may be necessary for biomarker development in these heterogeneous cancers. Comparison with other MSeq-analysed tumour types reveals mutation rates and their timing to determine phylogenetic tree morphologies

    Construction and analysis of tissue microarrays in the era of digital pathology: a pilot study targeting CDX1 and CDX2 in a colon cancer cohort of 612 patients.

    Get PDF
    CDX1 and CDX2 are possibly predictive biomarkers in colorectal cancer. We combined digitally-guided (next generation) TMA construction (ngTMA) and the utility of digital image analysis (DIA) to assess accuracy, tumour heterogeneity and the selective impact of different combined intensity-percentage levels on prognosis.CDX1 and CDX2 immunohistochemistry was performed on ngTMAs covering normal tissue, tumour centre and invasive front. The percentages of all epithelial cells per staining intensity per core were analysed digitally. Beyond classical prognosis analysis following REMARK guidelines, we investigated pre-analytical conditions, three different types of heterogeneity (mosaic-like, targeted and haphazard) and influences on cohort segregation and patient selection. The ngTMA-DIA approach produced robust biomarker data with infrequent core loss and excellent on-target punching. The detailed assessment of tumour heterogeneity could - except for a certain diffuse mosaic-like heterogeneity - exclude differences between the invasive front and tumour centre, as well as detect haphazard clonal heterogeneous elements. Moreover, lower CDX1 and CDX2 counts correlated with mucinous histology, higher TNM stage, higher tumour grade and worse survival (p < 0.01, all). Different protein expression intensity levels shared comparable prognostic power and a great overlap in patient selection. The combination of ngTMA with DIA enhances accuracy and controls for biomarker analysis. Beyond the confirmation of CDX1 and CDX2 as prognostically relevant markers in CRC, this study highlights the greater robustness of CDX2 in comparison to CDX1. For the assessment of CDX2 protein loss, cut-points as percentage data of complete protein loss can be deduced as a recommendation

    The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation.

    Get PDF
    OBJECTIVES: The interaction between the immune system and tumor cells is an important feature for the prognosis and treatment of cancer. Multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence (mIF) analyses are emerging technologies that can be used to help quantify immune cell subsets, their functional state, and their spatial arrangement within the tumor microenvironment. METHODS: The Society for Immunotherapy of Cancer (SITC) convened a task force of pathologists and laboratory leaders from academic centers as well as experts from pharmaceutical and diagnostic companies to develop best practice guidelines for the optimization and validation of mIHC/mIF assays across platforms. RESULTS: Representative outputs and the advantages and disadvantages of mIHC/mIF approaches, such as multiplexed chromogenic IHC, multiplexed immunohistochemical consecutive staining on single slide, mIF (including multispectral approaches), tissue-based mass spectrometry, and digital spatial profiling are discussed. CONCLUSIONS: mIHC/mIF technologies are becoming standard tools for biomarker studies and are likely to enter routine clinical practice in the near future. Careful assay optimization and validation will help ensure outputs are robust and comparable across laboratories as well as potentially across mIHC/mIF platforms. Quantitative image analysis of mIHC/mIF output and data management considerations will be addressed in a complementary manuscript from this task force

    Genetic and immune landscape evolution in MMR-deficient colorectal cancer.

    Get PDF
    Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Ultra-Sensitive Mutation Detection and Genome-Wide DNA Copy Number Reconstruction by Error-Corrected Circulating Tumor DNA Sequencing.

    Full text link
    Background Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies.Methods We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction.Results Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS , parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing.Conclusions This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution.Clinicaltrialsgov identifier NCT02112357
    corecore